A Temporal Extension of the Bayesian Aerosol Release Detector
نویسندگان
چکیده
Early detection of bio-terrorist attacks is an important problem in public health surveillance. In this paper, we focus on the detection and characterization of outdoor aerosol releases of Bacillus anthracis. Recent research has shown promising results of early detection using Bayesian inference from syndromic data in conjunction with meteorological and geographical data [1]. Here we propose an extension of this algorithm that models multiple days of syndromic data to better exploit the temporal characteristics of anthrax outbreaks. Motivations, mechanism and evaluation of our proposed algorithm are described and discussed. An improvement is shown in timeliness of detection on simulated outdoor aerosol Bacillus anthracis releases.
منابع مشابه
Integrating a Commuting Model with the Bayesian Aerosol Release Detector
The Bayesian Aerosol Release Detector (BARD) is a biosurveillance system for detecting and characterizing disease outbreaks caused by aerosol releases of anthrax. A major challenge in modeling a population’s exposure to aerosol anthrax is to accurately estimate the exposure level of each individual. In part, this challenge stems from the fact that the only spatial information routinely containe...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملThe Bayesian aerosol release detector: an algorithm for detecting and characterizing outbreaks caused by an atmospheric release of Bacillus anthracis.
Early detection and characterization of outdoor aerosol releases of Bacillus anthracis is an important problem. As health departments and other government agencies address this problem with newer methods of surveillance such as environmental surveillance through the BioWatch program and enhanced medical surveillance, they increasingly have newer types of surveillance data available. However, ex...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملAerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities
Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...
متن کامل